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Abstract. The ground-state energies of several interacting electrons confined in a parabolic dot
in two dimensions are obtained by using hyperspherical coordinates and high-order perturbation
theory. The effect of a perpendicular magnetic field is to change the ground state discontinuously
in orbital angular momentum L. The preferred values of L for the ground state and the associated
electronic structures are studied in detail. It is found that the effective interaction between two
electrons moving in different cyclic orbits is a short-range attraction matched to a long-range
repulsive tail. Because of this, electrons tend to fill adjacent cyclic orbits and form bunches in the
ground states. The effects of an impurity ion are also considered.

1. Introduction

The electronic structure in quantum-dot systems is now a topic under intensive study [1].
Recent experiments on single-electron tunnelling into a quantum dot [2, 3] have demonstrated
the possibility of measuring the chemical potential µN of an N -electron system. µN is defined
as the energy required to add one electron to the dot:

µN = E(N) − E(N − 1) (1)

where E(N) is the ground-state energy of an N -electron dot, etc. Hence, the measurement
of µN allows one to determine the ground-state energies indirectly. In a varying magnetic
field, the experimentally measured µN show many kinks [1], stimulating many theoretical
calculations of the µ–B phase diagrams [4, 5]. In the weak-field regime, the kinks can be
fully understood by considering an independent-particle model: they are caused by the jump
of the highest-energy electron in the dot from one discrete quantum level into another. In the
strong-field regime, where all electrons are in the lowest Landau level and spin polarized, the
kinks signal collective transitions induced by the electron–electron interaction and cannot be
explained within the single-electron picture. In this case, the central issue to be addressed is
that of what kinds of electronic structure stabilize the ground state of N interacting electrons.

In circular dots where the total angular momentum is a good quantum number, the electron
correlations result in extra stable ground states with magic values of the angular momentum
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L. For dots with a small number of electrons (N � 7), two sequences of magic angular
momenta, i.e.,

La = Nk + N(N − 1)/2 (k = 0, 1, 2, . . .) (2)

and

Lb = (N − 1)(k + 1) + (N − 1)(N − 2)/2 (k = 1, 2, 3, . . .) (3)

have been found [6–15]. The ground-state transitions induced by a varying magnetic field
strictly obey the rules �L = N for N � 5, and �L = N − 1 for N = 6, 7 in the spin-
polarized regime. States with other non-magic L-values can never become the ground state.
For these rules, the geometric configuration model [12] provides a simple and reasonable
explanation. According to the model, there is a large probability for few interacting electrons
to form a regular polygon in the ground state, i.e., anN -sided regular polygon with one particle
at each vertex when N � 5 or an (N − 1)-sided polygon with the N th particle at the centre
when N = 6 and 7, in order to minimize the pairwise Coulomb repulsion. Unfortunately, such
energetically favourable configurations are generally prohibited by the basic laws of quantum
mechanics. From a consideration of the exchange and rotational symmetries [12], the N -sided
polygon is allowed only when

L = Nk + N(N − 1)/2

and the (N − 1)-sided polygon is allowed only when

L = (N − 1)(k + 1) + (N − 1)(N − 2)/2.

These are just the magic numbers given by equations (2) and (3). Other models, such as
the composite-fermion model [16, 17] and Dharma-wardana’s model [18], also explain the
existence of magic numbers with partial success.

Despite the success of the geometric configuration model in explaining the magic L-
values of few-electron systems, there are still sufficient reasons to question its applicability
to several-electron systems. First of all, it is known that the lowest-energy configuration of a
classical several-electron system is a multi-shell structure [15, 16] which does not have any
rotational symmetry as a regular polygon, unless, as on some rare occasions, the numbers of
particles in different shells happen to be commensurable. Therefore, for the majority of cases,
there should be no restriction on the occupation of the lowest-energy configuration arising
from exchange and rotational symmetries. But the fact remains that magic numbers exist in
systems with any number of particles (see below). Secondly, a several-electron system may
have a few equilibrium configurations which are very close in energies. Therefore, the system
has multiple choices of electronic structures for minimizing the ground-state energy, a feature
not shared by systems with few electrons. Finally, unlike those of few-particle systems, the
wavefunctions of a several-particle system are generally very smooth. The assumption of
forming certain regular polygons does not have a firm grounding.

This paper reports our analysis as regards the magicL-values of a quantum dot withN = 9,
10, and 11, and the associated electronic structures, which, as far as we know, have not been
studied by exact diagonalizations and including the mixings of several Landau levels, due to
the enormous number of basis functions involved. By introducing hyperspherical coordinates,
we have succeeded in separating the Schrödinger equation into aB-independent hyper-angular
equation and aB-dependent hyper-radial equation. The latter is solved by employing the high-
order perturbation theory to obtain the ground-state energies. We find that the orbiting electrons
in a quantum dot tend to form bunches. A more general formula is derived for determining the
magic numbers, of which equations (2) and (3) are two special cases. The bunching behaviour
can be understood in terms of a short-range attraction between two orbiting electrons in the
lowest Landau level.
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2. The model

Consider a droplet of spinless (spin-polarized) 2D electrons confined in a parabolic potential,
m∗

eω
2
0r

2/2, where ω0 is a strength parameter, and m∗
e is the effective mass. A magnetic field B

is applied in the vertical direction. The N -body Schrödinger equation in the symmetric gauge
reads [9] {

N∑
j=1

[
p2
j

2m∗
e

+
1

2
m∗

eω
2r2

j

]
− ωch̄

2
L +

e2

4πε0εr

N∑
j>k

1

rjk

}
� = E� (4)

where

ω =
√
ω2

0 + ω2
c/4

and ωc = eB/m∗
e is the cyclotron frequency.

When the length unit is the effective cyclotron radius a = (h̄/2ωm∗
e )

1/2 and the energy
unit is h̄ω, equation (4) can be rewritten as{

N∑
j=1

[
−∇2

j +
1

4
r2
j

]
+ γ

N∑
j>k

1

rjk

}
� = (E + ζL)� (5)

where γ = 2a/aB , aB = 4πεh̄2/(e2m∗
e ) is the effective Bohr radius, ζ = ωc/(2ω).

We use zj (≡xj + iyj ) to denote the complex position of the j th electron and introduce a
set of hyperspherical coordinates in the following manner [19]:

zj = ρ

( j−1∏
k=0

sin φk

)
cosφj exp(iϕj ) (j = 1, 2, . . . , N) (6)

where ϕj is the polar angle of zj ,

ρ = (|z1|2 + |z2|2 + · · · + |zN |2)1/2

is the hyper-radius, {φ1, φ2, . . . , φN−1} are the hyper-angles, defined in the domain 0 � φj �
π/2, and φ0 ≡ π/2 and φN ≡ 0 are understood. With hyperspherical coordinates, equation (5)
takes the form[
− 1

ρ2N−1

∂

∂ρ
ρ2N−1 ∂

∂ρ
+
$2(%)

ρ2
+

1

4
ρ2 + γ

U(%)

ρ

]
�(ρ,%) = (E + ζL)�(ρ,%) (7)

where % represents all angular variables,

U(%) = ρ

N∑
i<j

1/rij

and $2(%) is the grand orbital operator. The eigenfunctions of the eigenequation

$2(%)Y[λ](%) = λ(λ + 2N − 2)Y[λ](%)

are known as hyperspherical harmonics which can be expressed as

Y[λ](%) =
[
N−1∏
j=1

P
λj+1,|lj |
j,νj

(φj )

] [
N∏
k=1

exp(ilkϕk)√
2π

]
(8)

where [λ] represents a set of (2N − 1) quantum numbers ν1, . . . , νN−1, l1, . . . , lN , λN = |lN |,
λj = 2νj + λj+1 + |lj |,

λ =
N−1∑
j=1

(2νj + |lj |) + |lN | L =
N∑
k=1

lk
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and

P
α,β

j,ν (φ) =
[

2(2ν + α + β + 1)ν!(ν + α + β)!

(ν + α)!(ν + β)!

]1/2 ν∑
m=0

(−1)ν−m

(
ν + α + N − j − 1

m

)

×
(
ν + β

ν − m

)
(cosφ)2m+β(sin φ)2(ν−m)+α. (9)

By expanding�(ρ,%) in terms of the antisymmetrized hyperspherical harmonics Ỹ[λ](%):

�(ρ,%) =
∑
[λ]

F[λ](ρ)Ỹ[λ](%) (10)

equation (7) is transformed into a set of coupled differential equations:[
1

ρ2N−1

d

dρ
ρ2N−1 d

dρ
− λ(λ + 2N − 2)

ρ2
− 1

4
ρ2 + E + ζL

]
F[λ](ρ) = γ

∑
[λ′]

U[λ],[λ′]

ρ
F[λ′](ρ)

(11)

where

U[λ],[λ′] =
∫

Ỹ ∗
[λ](%)U(%)Ỹ[λ′](%) d% (12)

are the coupling constants.
Equations (11) remain exact. If γ = 0, they can be solved analytically and completely:

F
(0)
n,λ(ρ) =

(
n!

2α(n + α)!

)1/2

ρλL(α)
n (ρ2/2) exp(−ρ2/4) (13)

E(0)
n = 2

(
n +

λ − L

2

)
+ N + (1 − ζ )L (n = 0, 1, 2, . . .) (14)

where α = λ + N − 1. Here, [n + (λ − L)/2] gives the Landau-level index. L(α)
n (x) is a

Laguerre polynomial.
When γ �= 0, the approximation that we use this paper is truncating the expansion series

for �[λ](ρ,%) in equation (10) such that the summation only runs over the hyperspherical
harmonics associated with the smallest λ (note that λmin = L). When λ = L, i.e., νj = 0
for all j , the antisymmetrized hyperspherical harmonics Ỹ[λ](%) can be expressed as a Slater
determinant:

|l1 · · · lN ;L〉 =
[

N∏
j=1

2π(2lj )!!

]−1/2

Det
{
ẑ
l1
1 , ẑ

l2
2 , . . . , ẑ

lN
N

}
(15)

where ẑj = zj /ρ.
When we write F[λ](ρ) as

F[λ](ρ) = GL(ρ)ul1···lN (16)

equations (11) can be reduced to a second-order differential equation:[
d2

dρ2
+

2N − 1

ρ

d

dρ
− L(L + 2N − 2)

ρ2
− 1

4
ρ2 − η̃

ρ
+ E + ζL

]
GL(ρ) = 0 (17)

and a matrix eigenequation:

Ūū = ηū (18)

where Ū is a square matrix composed of Ul1···lN ;l′1···l′N , ū is the column matrix of ul1···lN , η is the
eigenvalue obtained by numerically diagonalizing Ū, η̃ = γ η.
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To obtain the eigenenergies from equation (17), we treat as a perturbation the Coulomb
termH ′ = βη̃/ρ, whereβ is a strength parameter set to unity at the end. The energy eigenvalue
and eigenfunction of the nth state are expressed as power series in β:

En =
∞∑
j=0

βjE(j)
n (19)

Gn,L(ρ) =
∞∑
j=0

βjG
(j)

n,L(ρ). (20)

Substituting equations (19) and (20) into equation (17) and setting the coefficient of each βj

to zero, we obtain the following recurrence relations for determining E
(j)
n :

E(1)
n = H ′

nn (21)

D
(1)
kn =




H ′
kn

E
(0)
n − E

(0)
k

for k �= n

0 for k = n

(22)

and for j � 2:

E(j)
n =

∑
k

H ′
nkD

(j−1)
kn (23)

D
(j)

kn =




1

E
(0)
n − E

(0)
k

[∑
k′

H ′
kk′D

(j−1)
k′n −

j−1∑
j ′=1

E(j ′)
n D

(j−j ′)
kn

]
for k �= n

0 for k = n

(24)

where

H ′
nk =

∫ ∞

0
F

(0)
n,L(ρ)H

′F (0)
k,L(ρ)ρ

2N−1 dρ

= η̃

[
πn!k!

22α+1(n + α)!(k + α)!

]1/2

×
n∑

m=0

k∑
m′=0

(−1)m+m′
(
n + α

n − m

)(
k + α

k − m′

)
[2(m + m′ + α) − 1]!!

2m+m′
m!m′!

. (25)

It is interesting to notice that the usual approach, i.e. assuming that all particles occupy
the lowest Landau level [16], is equivalent to the first-order perturbation theory in our present
formalism. From equations (18), (19), (21), and (25), we obtain the explicit expression for the
ground-state energy in the first-order perturbation theory:

E0 ≈ E
(0)
0 + E

(1)
0 = N + (1 − ζ )L + η̃

(2α − 1)!!

(2α)!!

(
π

2

)1/2

. (26)

Finally [20], we would like to point out the existence of exact solutions of equation (17)
at some special values of η̃ (note that η̃ depends on the adjustable parameter B through γ ).
To find these solutions, we write Gλ as a product of asymptotic solutions (near ρ = 0 and ∞)
and a power series in ρ:

Gλ(ρ) = ρλ exp(−ρ2/4)
∑
ν

Cνρ
ν. (27)
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Substitution of equation (27) into equation (17) leaves us with a set of linear equations for
determining the expansion coefficients {Cν}:

(2α + 1)C1 − η̃C0 = 0 (28)

and

ν(2α + ν)Cν − η̃Cν−1 + [ε − ν + 2]Cν−2 = 0 (29)

where ε = E − N − (1 − ζ )L = E − E
(0)
0 .

The three-step nature of the recurrence relation of equation (29) implies that if two
succeeding coefficients (say Cν+1 and Cν+2) vanish, the other Cν ′(ν ′ > ν + 2) vanish auto-
matically. Since equations (28) and (29) allow Cν to be expressed in terms of C0 in the
following manner:

Cν = H(ν, ε, η̃)C0 (30)

adherence to the conditions Cν+2 = 0 and Cν+1 = 0 is guaranteed if

H(ν + 1, ε, η̃) = 0 (31)

and

ε = ν. (32)

Both equations determine the spectrum of the allowed η̃ andE. This is very useful for checking
the accuracy of the perturbation theory.

3. Numerical results and interpretations

3.1. Convergence of the perturbative expansion

To study the convergence of the perturbative expansion of equation (19), we first find the zeros
of equation (31). For a given ε, there are several η̃-solutions. The largest solution gives the
ground state since the corresponding wavefunction has no node. Presented in the first row
of table 1 are the largest η̃-solutions associated with ε = 10, 20, 30, and 40 respectively.
With these η̃-values as the input, the ground-state energies are recalculated from equations
(19)–(25). In table 1, results with the first five orders of perturbation are presented for nine
electrons in the L = 36 state and compared with the exact ones, where the convergence is fast
when η̃ is small but slows down as η̃ increases. For a typical dot in GaAs (i.e., m∗

e = 0.067me,
εr = 13.1, and h̄ω0 = 3.6 meV) under a magnetic field B = 5 T, we obtain η̃ = 376.5 for
the L = 36 state. Hence the error in the perturbative expansion is no more than a fraction in

Table 1. The calculated lowest-energy eigenvalues (ε) of the state with L = 36 for a system with
N = 9 at four different η̃-values where analytical solutions of equation (17) exist. jm is the highest
order of perturbation included.

η̃

jm 96.720258942 198.71195983 305.92050170 418.26510470

1 10.281165492 21.122674471 32.518722964 44.460724239
2 9.9838458368 19.867694677 29.544278357 38.900504095
3 10.000932826 20.015873184 30.084956660 40.282376977
4 9.9999593951 19.998529899 29.987531824 39.941935955
5 10.000000021 20.000017000 30.000392487 40.003379831
Exact 10 20 30 40
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103 when the first five orders are included. For larger L-values and B, η̃ is smaller and the
expansion in equation (19) converges even faster. Another noteworthy point in table 1 is that the
ground-state energies oscillate with the order of perturbation. As a result, the extensively used
second-order perturbation theory [21] significantly underestimates the ground-state energies.

3.2. The preferred ground states

In figure 1, the lowest eigenenergies associated with differentL-values, obtained from equation
(19), are presented as a function of field strength B for N = 9, 10, and 11. There are
complicated level-crossings as the external magnetic field is varied. Changes in theL-values of
the ground state of the system can be simply understood from equation (26), where only the first
order of perturbation is considered: in the weak-field regime, where ζ is close to zero andE(0)

0 is
dominant, the ground-state energy can be minimized by minimizing L. Then electrons tend to
fill the innermost orbits with single-particle angular momenta l = 0, 1, 2, . . . , (N−1), and the
system has a ground state withL = N(N−1)/2, the smallest total angular momentum allowed
by the Pauli principle in the lowest Landau level. As the magnetic field increases,E(0)

0 decreases
and the Coulomb energy tends to grow due to the reduction of the effective magnetic length
a. The ground-state energy can be minimized by an increase in L since the Coulomb energy
decreases with increasingL (see below). Consequently the dot undergoes a series of transitions
to ground states with higher and higher angular momenta L to lower the ground-state energy.
Each of these transitions causes a kink in the gate voltage applied to the dot in experiments [1].
The transitions are discontinuous, i.e., L = 36 → 45 → 52 → 57 → 64 → 71 → · · ·
for N = 9, L = 45 → 55 → 61 → 63 → 69 → 77 → · · · for N = 10 and
L = 55 → 66 → 73 → 79 → 82 → 87 → · · · for N = 11. These are the magic
values of L. Obviously, equations (2) and (3) are inadequate to describe all of these magic
numbers, indicating that the complexity increases with increasing N . States with other L-
values exist at much higher energy levels and can never become the ground state no matter
what values of B and ω0 are taken.

In order to trace the origin of the magic numbers, η0, the lowest eigenvalue of matrix Ū
is plotted as a function of L in figure 2, where η0 shows rich structures although it tends to
decrease globally. Each state where the ground state can occur gives a deep downward cusp
in η0. Generally speaking, the deeper the cusp, the wider the range of B-field over which the
corresponding state is the ground state. The depths of, and the separations from the adjacent
downward cusps also affect this range. In figure 2, there are also some states which give a
downward cusp but fail to become the ground state (e.g., L = 50, 54, 60, 66, . . . for N = 9).
As an example, consider the state with L = 73 for N = 10. This state clearly shows a
significant downward cusp but fails to form a ground state (see figure 1). The reason is that
the cusps produced by the L = 69 and L = 77 states are too deep.

3.3. Classification of the states

At first sight, the downward cusps in figure 2 appear quite irregular. Analysis of the structures
of the corresponding angular wavefunctions reveals that although they are linear combinations
of many basis states of |l1, l2, . . . , lN ;L〉, only one of the basis states is dominant. For
example, for N = 9 in the state with L = 71, the ul1···lN associated with the basis state
|0, 1, 7, 8, 9, 10, 11, 12, 13; 71〉 is significantly larger than other ul1···lN , while for N = 9 and
L = 68, the eigenstate is dominated by the basis state |0, 5, 6, 7, 8, 9, 10, 11, 12; 68〉, and so
on. This can also be seen clearly from the distribution of the occupation numbers wl (see
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Figure 1. The lowest eigenenergies associated with different L-values, given by equation (19),
are presented as a function of field strength B for N = 9, 10, and 11. The zero-point energy
Nh̄ω is omitted. Numbers in the figures label the ground-state angular momentum L. The values
h̄ω0 = 3.6 meV, m∗

e = 0.067me , εr = 13.1 have been used.

figures 3–5), which is defined by

wl =
∑
l1···lN

|ul1···lN |2〈l1, . . . , lN ;L|â†
l âl|l1, . . . , lN ;L〉 (33)

where â†
l (âl) is an operator that creates (destroys) an electron with angular momentum l. wl

is the probability of finding an electron in the lth orbit and is related to the total angular
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Figure 2. The lowest eigenvalues of the matrix Ū are presented as a function of L for N = 9, 10,
and 11. The black dots denote states which can become the ground state in a varying magnetic
field.

momentum L by

L =
∑
l

lwl. (34)

The states presented in figures 3–5 show clearly bunch structures in their wl-
distribution. As a general rule, given N electrons, n of them occupying the
innermost orbits l = 0, 1, . . . , n − 1, and the other (N − n) occupying the outer orbits
l = n + k, n + k + 1, . . . , n + k + N − n − 1 (k � 1) compactly, the basis state will have a
total angular momentum

L = (N − n)(k + n) + [(n − 1)n + (N − n − 1)(N − n)]/2 (k = 1, 2, . . .). (35)

In figures 3–5, states in the same column have similar bunch structures since they are
dominated by basis states having the same n and N − n, but differing in k. Hence we can use
the symbol |{n,N − n}k;L〉 to denote an eigenstate and characterize the dominant electronic
structure of states with a magic L-value: n is the number of electrons in the inner bunch,
(N − n) is the number of electrons in the outer bunch, k is the number of holes between the
two bunches, L is related to n, (N − n), and k through equation (35). States with non-magic
L-values do not have a clear bunch structure and the symbol is inadequate. It is interesting
to note that equations (2) and (3) can be regarded as two special cases of equation (35) with
n = 0 and 1 respectively.

For N = 9, 10, and 11, only two magic eigenstates of |{0, N}k;L〉 with k = 0 and 1 have
been found (see the left-hand columns of figures 3, 4, and 5). They are the two smallest magic
L-values in the systems. With a small L (i.e., L � N +N(N − 1)/2), where only very limited
single-particle orbits are open to the system, the splitting of the full N -electron bunch into two
smaller bunches of {n,N − n} with n < (N − n) is either impossible or the resulting two
bunches are so close together that there is only one hole between them (e.g., see figure 3 for
N = 9 and L = 42). The systems preferred a ground state with all of the electrons being kept
in a compact bunch. As L increases, magic L-values associated with other bunch structures
are available.
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Figure 3. The distribution of occupation numbers wl for N = 9 and states which show a clear
bunch structure.

For N = 9, the most strongly preferred sequence of states as regards the ground state
occurring are |{2, 7}k;L〉, when L is sufficiently large. This can be seen from figure 1,
where states |{2, 7}3; 57〉, |{2, 7}4; 64〉, |{2, 7}5, 71〉, . . . have a wider B-range over which
they can become the ground state. This implies that the bunch structure of {2, 7} is most
effective in reducing the Coulomb energy. In figure 3, the state with L = 60 is a very special
case, i.e., the basis states |0, 1, 2, 7, 8, 9, 10, 11, 12; 60〉 and |0, 4, 5, 6, 7, 8, 9, 10, 11; 60〉 are
both involved. If the former is dominant, the eigenstate should be denoted as |{3, 6}4; 60〉;
if the latter is dominant, the eigenstate should be denoted as |{1, 8}3; 60〉, according to the
regulation introduced above. In practice, the basis state |0, 4, 5, 6, 7, 8, 9, 10, 11; 60〉 is
found to be dominant. This is why the state is given in the right-hand column and there
is a gap between states L = 54 and L = 66 in the second column (from the left) in
figure 3.
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Figure 4. As figure 3, but for N = 10.

For N = 10, the most strongly preferred sequence of states is |{2, 8}k;L〉 since the states
|{2, 8}2; 61〉, |{2, 8}3; 69〉, |{2, 8}4; 77〉, . . . have a wider B-range over which they can become
the ground state in figure 1. Hence, the most stable bunch structure is {2, 8} for N = 10.

For N = 11, for the states |{2, 9}2; 73〉, |{2, 9}3; 82〉, . . . and the states |{3, 8}3; 79〉,
|{3, 8}4; 87〉, . . ., the B-ranges over which they can become the ground state are about the
same. This implies that the bunch structures {2, 9} and {3, 8} are almost equally effective for
N = 11 in reducing the Coulomb energy.

3.4. Theoretical interpretations

To answer the question of why the formation of bunches can effectively reduce the Coulomb
energy, in figure 6, 〈l1, l2|v(1, 2)|l1, l2〉, the Coulomb interaction energy of two electrons in
an unperturbed state |l1, l2〉, is presented as a function of � ≡ |l2 − l1| for different values of
L12 ≡ l1 + l2. Figure 6 reveals that for a given L12, there are essentially two extreme options
in reducing the interaction energy: � = 1 or � = L12. With � = 1 (note that � = 0
is prohibited by the Pauli principle), the two electrons move around with the closest angular
momenta and meet each other least frequently, resulting in a state with low interaction energy.
In the classical limit (i.e., l1, l2 � 0), this would be a state of two electrons moving at about
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Figure 5. As figure 3, but for N = 11.

the same speed and with a phase difference of π (resulting from antisymmetrization). With
� = L12, the two electrons move in orbits that are as far apart as possible.

An alternative and more comprehensive view of this subject is to regard the cyclic
motion of an electron as a quasiparticle and � as a parameter denoting the separation of two
quasiparticles. Then figure 6 just tells us that the mutual interaction between two quasiparticles
is a short-range attraction matched to a long-range repulsive tail (Hartree–Fock calculations
also suggested the existence of a short-range attraction; see [22]). Hence electrons tend to
fill the adjacent orbits to minimize their interaction energy. The short-range attraction will be
saturated when the number of electrons in a bunch is up to a certain maximum. The interaction
between two saturated bunches is repulsive and they tend to separate from one another. Figure 6
also indicates that the range of attraction is shorter in the inner orbits (i.e., when L12 is small
and thus both l1 and l2 are small). Hence the inner bunch is always composed of a smaller
number of particles than the outer bunch.

It is well known that in the large-L limit, the Coulomb energy overwhelms the kinetic
energy and the system tends to crystallize. In the range of L covered above, the distribution of
the wavefunctions in multi-coordinate space is still rather smooth and the geometric structures
are ambiguous. However, the similarity between the preferred bunch structures and the shell
structures of the corresponding Wigner molecules is already well established. For nine, ten, and
eleven classical electrons confined in a 2D harmonic potential, the lowest-energy configurations
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Figure 6. The interaction energies of two electrons in an unperturbed antisymmetric state |l1, l2〉,
〈l1, l2|v(1, 2)|l1, l2〉, are presented as functions of� = |l2 − l1| for different values ofL12 = l1 + l2.
� = 1 is the smallest value allowed by the Pauli principle. The energy unit is e2/(4πε0εra).

are the two-shell structures (2, 7), (2, 8), and (3, 8) respectively [23–25]. This gives us a clue
as regards why the bunch structure {2, 7} is preferred by the nine-electron quantum dot and
{2, 8} is preferred by the ten-electron quantum dot when L is sufficiently large. For eleven
classical electrons, the difference in energy between the global-minimum (3, 8) and the local-
minimum (2, 9) configurations is only 0.06%. This explains why the bunch structures {2, 9}
and {3, 8} are almost equally effective in reducing the Coulomb energy for eleven electrons in
a quantum dot.

3.5. Effects of impurity

Up till now, our discussions have been limited to impurity-free dots. The implantation of
an impurity ion can significantly change the spectrum of a quantum dot. If the impurity ion
locates at the centre of the dot, L continues to be a good quantum number. In figure 7(a), η0 is
presented for a nine-electron dot with a negatively charged acceptor ion at the centre. Due to
the repulsive electron–impurity interaction, any configuration having a few particles close to
the centre is energetically quite unfavourable. As a result, the electrons tend to be in a single
compact bunch, and a downward cusp in η0 occurs when a compact filling is accessible (i.e.,
L = 36, 45, 54, 63, . . . for N = 9).

If the impurity is a positively charged donor ion, the attractive electron–impurity
interaction favours a larger number n of particles close to the centre. With N = 9, the
major η0-cusps, occurring at states |{2, 7}k;L〉 in an impurity-free dot, are shifted to states
|{3, 6}k;L〉 in a donor-doped dot in figure 7(b).

3.6. Summary

To summarize, in this paper we have presented a comprehensive analysis of the low-lying
spectrum of electrons in the lowest Landau level in a quantum dot. Mixings of higher Landau
levels are included through the high-order perturbation theory. Unlike systems with few
electrons (N < 7), several-electron systems may have more than one sequence of magic
numbers, which cannot be explained by the previous geometrical configuration model. The
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Figure 7. η0 as a function of L for nine electrons in a quantum dot: (a) for an acceptor-doped
quantum dot; (b) for a donor-doped quantum dot.

short-range attraction and long-range repulsion between two orbiting electrons favours certain
bunch structures depending on N . Due to the quantization of angular momentum, the
energetically favourable bunch structures are accessible only when L takes the magic values.
We have carried out the calculations for N = 12, 13, and 14 and found that the preferred
configuration is also a two-bunch structure. The three-bunch structure is expected to exist in
systems withN � 16 and the four-bunch structure is expected to exist in systems withN � 21.
Unfortunately they are beyond the scope of our numerical computations.

Acknowledgments

This work was supported by the Croucher Foundation, and also supported in part by the National
Natural Science Foundation, grant No 19875018, Guangdong Natural Science Foundation and
Guangzhou Natural Science Foundation, People’s Republic of China.

References

[1] Ashoori R C 1996 Nature 379 413
[2] McEuen P L, Foxman E B, Meirav U, Kastner M A, Meir Y and Wingreen N S 1991 Phys. Rev. Lett. 66 1926
[3] Ashoori R C, Stormer H L, Weiner J S, Pfeiffer L N, Baldwin K W and West K W 1993 Phys. Rev. Lett. 71 613
[4] Yang S-R E, MacDonald A H and Johnson M D 1993 Phys. Rev. Lett. 71 3194
[5] Ahn K H, Oh J H and Chang K J 1995 Phys. Rev. B 52 13 757
[6] Laughlin R B 1983 Phys. Rev. B 27 3383
[7] Girvin S M and Jach T 1984 Phys. Rev. B 29 5617
[8] Lai W, Yu K, Su Z and Yu L 1984 Solid State Commun. 52 339
[9] Maksym P A and Chakraborty T 1991 Phys. Rev. Lett. 65 108

Maksym P A and Chakraborty T 1992 Phys. Rev. B 45 1947
[10] Maksym P A 1993 Physica B 184 385

Maksym P A 1996 Phys. Rev. B 53 10 871
[11] Hawrylak P and Pfannkuche D 1993 Phys. Rev. Lett. 70 485
[12] Ruan W Y, Liu Y Y, Bao C G and Zhang Z Q 1995 Phys. Rev. B 51 7942



Preferred ground states of a quantum dot 3925

[13] Bao C G, Ruan W Y and Liu Y Y 1996 Phys. Rev. B 53 10 820
[14] Seki T, Kuramoto Y and Nishino T 1996 J. Phys. Soc. Japan 65 3945
[15] Ruan W Y and Cheung Ho-Fai 1999 J. Phys.: Condens. Matter 11 435
[16] Jain J K and Kawamura T 1996 Europhys. Lett. 29 321
[17] Kawamura T and Jain J K 1996 J. Phys.: Condens. Matter 8 2095
[18] Dharma-wardana M W C 1995 J. Phys.: Condens. Matter 7 4095
[19] Delves L M 1959 Nucl. Phys. 9 391

Lin C D 1995 Phys. Rep. 257 2
[20] Taut M 1993 Phys. Rev. A 48 3561
[21] Merkt U, Huser J and Wagner M 1991 Phys. Rev. B 43 7320
[22] Chamon W and Wen X G 1994 Phys. Rev. B 49 8227
[23] Bedanov V M and Peeters F M 1994 Phys. Rev. B 49 2667
[24] Choi M F, Cheung P and Hui P M 1997 Solid State Commun. 103 357
[25] Xie W F and Chen C Y 1998 Physica B 254 207


